RMI Outlet
Utilities, grid operators, homeowners, and private- and public-sector building owners and operators are all buzzing about buildings that dynamically interact with the electric grid. They present an exciting opportunity to go beyond net-zero energy and provide valuable benefits to the electric grid and provide a significant financial return for building owners.
At this year’s Rocky Mountain Institute Electricity Innovation Lab (e–Lab) Accelerator event, I facilitated a session on a new initiative to support such grid-interactive buildings: the GridOptimal rating system. This emerging opportunity has the potential to make a great contribution to the electric grid and to building owners’ bottom lines.
Grid optimal buildings have grid-friendly load shapes and have the capabilities and the flexibility to provide services to the grid. Ultimately, because they support the grid, grid-interactive buildings support least-cost decarbonization of the grid, while providing cost savings and other value to building owners.
Grid integrated buildings represent a long-sought opportunity for building owners and the utilities to play on the same team, and share the benefits of an opportunity that all sides can profit from.
Grid integrated buildings also bring alignment between the trend of net-zero energy buildings (which have increased 700 percent in the past five years) and net-zero carbon buildings (a concept that often unravels as calculations quickly get complicated—it can be difficult to find the carbon intensity of a particular building and grid, though RMI’s WattTime subsidiary makes it much easier).
While reducing carbon is the ultimate key to curbing climate change, those with the option to do so quite sensibly say, “show me the money.” Grid-integrated buildings are the means by which building owners can see a good return while doing good for the climate.
Achieving a net-zero carbon building begins with the cornerstone of a super-energy efficient building (targeting an energy use intensity [EUI] of <30) with a good building envelope.
Second, efficient HVAC approaches and controls help minimize energy use. This reduces not only the energy used (kWh) but also reduces peak demand (kW), and is known as optimizing the load factor of the building.
Third, smart controls coupled with advanced submetering and technologies that enable load flexibility allow the building to shift demand, contributing to operational savings. Finally, solar photovoltaics (PV) coupled with energy storage optimize on-site energy generation to meet net-zero energy and carbon goals.
Even with each of those factors in place, all is not yet optimal for the grid or for an owner’s bottom line. Net-zero energy buildings are rarely net-zero carbon, and they may have even greater demand spikes on the grid (i.e., load factor) than net-zero carbon buildings. Therefore, the carbon intensity and grid-infrastructure needs of net-zero energy buildings could actually be comparable to standard buildings, causing the grid to draw on dirty, peaking power-generation sources at times of peak demand.
Separately, in high-solar penetration markets like California and Colorado, curtailment is becoming a common occurrence. That is, utilities shed renewable power generation (from solar and wind) due to electricity supply surpassing demand during the peak time of day.
This is exemplified by the “duck curve”: daily load profiles showing PV generation is causing a steep drop in grid-required electricity when the sun comes up and a steep rise in it during the evening hours when the sun goes down. This introduces vulnerabilities to our grid and impedes the path to carbon neutrality. Let’s teach these ducks to fly, with more streamlined profiles (smoother load curves with less ramping).
To solve these problems, we need to make our buildings smarter, more flexible, and more dynamic participants of the grid. And most importantly, we need to prove there is a business case for building owners.
How and Why to Create a Grid-Interactive Building
Building owners can achieve grid-interactive buildings in several ways. Energy efficiency is always the lowest-cost, highest-impact carbon-reduction measure. Beyond efficiency, here are some additional, less-common measures to consider.
Those are some strategies we’re seeing in grid-interactive buildings, but the key question remains: why should building owners and operators want to do so, amid the long list of management issues that continuously pull at them?
Building owners should care about grid integration services because such services save them money, and can provide new sources of revenue, including:
This is an edited extract of a story originally published on the Rocky Mountain Institute Outlet blog. To read the original version click here.
This post was published on July 18, 2018 10:26 am
Switching water heaters to charge during the day can soak up solar and make sure…
Australia has notched up a new renewable energy milestone, with the number of households around…
A client recently presented us with a challenge: More than 2,000 properties that could have…
A $15m large-scale solar and battery storage rollout across six regional Western Australia towns has…
Australians aren’t signing up to VPPs at the rate the government needs to meet its…
Clean Energy Finance Corporation signs agreement with ING Australia to deliver another low-rate green loan…